Abstract

Online delivery methods offer much promise for anytime, anywhere adult learning. As a method of outreach, and to provide support for just-in-time learning, teacher educators are increasingly deciding to design Web sites that are online, resource-based learning environments for teachers and preservice teachers. Automated evaluation tools and data collection methods can help such Web site designers develop and use online, resource-based learning environments to meet their goals of providing high quality learning opportunities for teachers. This article presents a three-pronged approach for evaluating issues of pedagogical design and user-centered functionality in online, resource-based Web sites. Checklist, Web site traffic analysis, and talk aloud protocols are each described and then illustrated through their application to a site aimed at educating teachers about technology integration. We discuss the relevance for developing effective learning environments when teacher educators apply this evaluation approach to resource-based learning environments.

Teacher educators recognize that online delivery methods offer much promise for anytime, anywhere adult learning. In addition to courses taught partially or entirely online, teacher educators are composing collections of resources in learning environments that are designed to support the professional development needs of teachers for informal learning or just-in-time needs (Dede, 2003; Partnership for 21st Century Skills, 2003). Examples include Web sites designed by staff members of professional organizations (e.g., National Science Teachers Association at http://www.nsta.org), through professional development projects or grants targeting materials to a specific audience (e.g., Learning Point Associate’s “enGauge” at http://www.ncrel.org/engaue/), or even by individuals with a special interest (e.g., Kathy Schrock’s resources at http://school.discovery.com/schrockguide/).

For teacher educators in the role of Web site designer seeking to create and use such online, resource-based learning environments, finding the answers to the following questions is essential: What Web site characteristics are associated with a quality online learning environment? How can the features and resources of a Web site be designed to support informal, just-in-time learning? Which aspects of the site most engage users? Which users are drawn into the site? We first sought to answer these questions when evaluating the quality and usefulness of eTech (pseudonym), an online, resource-based learning environment for teachers organized around issues of technology integration. The environment was produced as part of a federally funded Preparing Tomorrow’s Teachers to Use Technology (PT3) project on which the three authors worked. We developed and piloted a multi-method evaluation approach outlined in this article as a resource to help teacher educators evaluate the quality of the Web sites they draw on as resources, or serve as a resource when designing such sites.

This article first defines and describes resource-based learning. Next, a multi-method approach is described for evaluating online, resource-based learning environments. These methods are illustrated through a review of the eTech Web site. We conclude with a discussion of the possibilities for teacher educators when applying these methods to improve the design and utilization of online, resource-based learning environments for teacher education.

Review of the Literature

Online Resource-based Learning Environments

Unlike online course environments, such as WebCT or Blackboard, sites designed as learning environments that are without a particular instructor, a designated term or assignments, or any particular class list, offer a distinct type of learning referred to in education as resource-based learning. These environments can be an important supplement to teacher education programs (Davis & White, 2001). Resource-based learning operates on the premise that learning can be facilitated with access to information organized around a specific domain that learners can actively explore (Davis & White, 2001). Online, resource-based learning environments are designed for a particular audience and educational purpose. In teacher education, for example, many school districts, higher education outreach efforts, and non-profit organizations are looking to online, resource-based sites to support pre and inservice teachers who are expanding their pedagogical repertoire. Features of such sites may include hypertext links, which enable users to seek and explore information on-demand, (i.e., content area standards or lesson plans), multimedia presentation (i.e., video clips, pictures, spreadsheets, graphs, and sounds), search capabilities, communication tools (i.e., threaded discussion forums or chats), customizable interfaces, and other resources that can potentially support users’ active exploration within a particular domain (Davis & White, 2001; Cameron & Spaeth, 2000; Jonassen, 2000). While much has been written about the Web as a resource for learning in higher education, these pieces focus mainly on models or software packages for distance education (Chang, Lin, Hao, Suarez, & St. Lawrence, 1997; Fryer, 1997) or the necessary infrastructure and technical support needed to deploy them, the design of the user interface for online course environments (Kaye, 1996; Descy, 1997), or promise of generating tuition-paying students (Khan, 1997).

1 We use the term “Web site designer” to refer to individuals, such as the staff of a project or institution, who seek to have educational materials made available to a targeted audience, and in many cases, evaluate and improve upon their use. We distinguish “Web site designer” from the “Web master.” Although Web masters may also participate in Web site design, they input and adjust site content, install Web site analysis software, and help troubleshoot.

2 While the evaluation of eTech was the catalyst for the methods we describe here, in this article it serves mainly as an example of their application.
Purposes of Evaluating Online, Resource-based Learning Environments

The challenge for teacher educators that invest in resource-based learning sites is to assess the site's potential and effectiveness as a learning environment (Barba & Clark, 2002; Swann & Einstein, 2000). If the more traditional process and outcome measures that are used for formal online course environments do not apply, then teacher educators who are designing or evaluating resource-based Web sites must find alternative methods to evaluate such aspects as the quality of design, user characteristics, preferences and behaviors (Trochim, 1996). For example, without an authenticated login, attendance and rate of participation or other process indicators are not collected; without a term limit or assignments and tests teacher educators cannot look to the completion rate or quality of assignments or scores as indicators of the users’ learning. While the literature on evaluating educational Web sites is extensive, the vast majority of this has been summative in nature, delivering criteria that instructors and students can use to decide whether or not to use or ignore a Web site as a source of information. Much of this literature provides a set of criteria, including scope, presentation, reliability, and match to curriculum to help people compare sites for appropriateness in a course (Branch, Dohun, & Koennecke, 1999; Wilkinson, Bennett, & Oliver, 1997; Schrock, 1998). Much less has been written on formative approaches to evaluating educational Web sites that provide information to designers in their planning and development of a Web site. These approaches can be divided between situations where the feedback from the intended users is readily available, such as where an instructor develops a Web site for his or her own course, and situations where a teacher educator seeks to provide instruction via an online, resource-based learning environment but will not receive substantial direct feedback from users about it (Hughes, 2001; Rieger & Sturgill, 1999; Weston & Barker, 2001). The evaluation approach we describe here aims to inform the latter situation.

Multi-method Approach to Formative Evaluation of Learning Environments

The evaluation approach we present here is formative and draws heavily on a utilization-focused evaluation model (Patton, 1997) in that it provides information to teacher educators interested in improving Web sites that they are designing or reviewing for use. We do not address the processes implied in utilization-focused evaluation for tailoring the evaluation to the audience’s needs, but rather present a set of evaluation methods sufficiently flexible to be adapted to different contexts in which resource-based Web sites are constructed.

Drawing on research on the key dimensions of effective learning environments as summarized by Bransford, Brown, and Cocking (2000), we used these dimensions as a checklist of features desired in an online learning environment and applied the checklist of criteria to the eTech site. This method was complemented by two user-centered research methods: Web site traffic analysis, which draws on data about the length, frequency, and repetition of site visits to infer basic patterns about Web site use and users, and think aloud exercises, which supplement the lack of contextualized information provided by traffic analysis and give examples of how a user may perform and experience tasks in the Web-based environment. These methods were used in a parallel manner, although findings from each method can inform the use of other methods (e.g., pedagogical design shapes the tasks users are asked to do in think aloud exercises).

Evaluating Online Pedagogical Design: Key Dimensions Checklist

Online, resource-based learning environments are most likely to be effective when they are designed and utilized in ways consistent with the research on how people learn. Bransford, Brown, and Cocking (2000) base the following key dimensions of effective learning environments upon current educational and cognitive neuroscience research.

Knowledge-centered environments focus on developing knowledge of the field or discipline and of strategies to develop expertise. They incorporate the language, artifacts, and essential principles on which learning in the discipline is based and model how experts work with those principles to gain increased understanding. In a Web-based environment, this might translate into digital, discipline-specific materials that are up to date, authentic, and accessible to the target audience.

Community-centered environments evolve a community of practice among like-minded professionals where members develop common goals and work toward achieving them. The community-centered environment provides opportunities for active participation and the development of a shared knowledge base. In a Web-based environment, this could be expressed as Internet-based conferencing environments that assist communication over distances, or a repository of artifacts of members’ practice.

Assessment-centered environments support learners’ testing of ideas by promoting ongoing reflection and feedback on practice. Such environments enable opportunities for metacognition in a sustained, coherent context. Effective Web sites might include Internet-based networking to promote ongoing reflection and feedback on field experiences in a manner that is sustainable, wide reaching, and affordable.

Learner-centered environments focus on learners, building on their strengths, interests, and needs. They take individual learning styles and prior knowledge into account. One of the most promising and under-appreciated qualities of new information technologies is their interactive capacity. Effective Web sites might allow users to customize the site according to their preferences and expertise.

The four dimensions or environments outlined here can be visualized as interdependent and overlapping spheres; therefore, we might expect all four dimensions to be present and functioning in a quality learning environment. Referencing research that suggests Web-based technology capabilities can be used as tools to scaffold, motivate, and enhance thinking (Chan, Burtis & Bereiter 1997; Gordin & Pea, 1995; Jonassen, 2000) and referencing Bransford et al’s conceptual framework about effective learning environments, we developed a checklist of the desirable features one would want to see in an effective Web-based learning environment (see Table 1). The purpose of applying a checklist is to guide a focused content analysis of the online, resource-based learning environment being evaluated in order to identify its relative strengths and weaknesses. Identifying which items are absent or present is a helpful first step in taking a critical look at how present items support the site’s educational purpose and intended audience. This also helps to clarify utilization and development strategies, such as which contexts are most promising for improving the resource-based learning environment. Thus, the purpose for the checklist’s use is not about the number of checks that amass, but rather how this systematic review, against established criteria, highlights the support for learning that the Web site provides or does not provide.

The main advantage for teacher educators who use such checklist criteria to guide data collection and analysis is that they link Web site design to a research based on quality instructional practice and they prompt the consideration of facets of the learner’s experience not otherwise apparent. Checklists can facilitate a more systematic and efficient approach to collecting and categorizing information, and help teacher educators more readily identify patterns in the data than may be possible with a grounded approach to inquiry.

While the framework we have outlined above is helpful for evaluating the pedagogical design of a Web-based learning environment and its potential for supporting learner’s growth, other methods and tools are needed to complete a user-centered analysis of the environment. A
Table 1. Key Dimensions of Online Learning Environments Checklist

<table>
<thead>
<tr>
<th>Possible Features of a Knowledge-centered, Online Learning Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hyper-linked resource area (e.g., links to content area standards, current research on Methods and Learning Theory, etc.)</td>
</tr>
<tr>
<td>• Digital content-area, curriculum or resources focused around specific issues or themes that is up-to-date, authentic, accessible and generative</td>
</tr>
<tr>
<td>• Electronic networking forums to support knowledge sharing (e.g., Web-based libraries of: videos of teachers and accompanying descriptions exchanged, reviewed, annotated, and linked to additional resources; lesson plans; journal entries; student work)</td>
</tr>
<tr>
<td>• Interactive design tools (e.g., curriculum design tools) with electronic prompts to scaffold thinking</td>
</tr>
<tr>
<td>• Electronic notebooks encourage reflection in design process</td>
</tr>
<tr>
<td>• Interactive survey instruments encourage reflection on workplace practices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possible Features of a Community-centered, Online Learning Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Internet-based conferencing environments that assist communication over distances</td>
</tr>
<tr>
<td>• Synchronous mechanisms (e.g., via “chat” rooms, multi-user virtual environments or asynchronous e-mail, bulletin boards, threaded discussion forums)</td>
</tr>
<tr>
<td>• Asynchronous mechanisms (e.g., e-mail, bulletin boards, etc.) that allow anytime-anywhere communication and archiving of discussions to assist the development of a group understanding over time</td>
</tr>
<tr>
<td>• Coherent human infrastructure (i.e., human facilitators who moderate online conferencing environments)</td>
</tr>
<tr>
<td>• Repository of artifacts of professional practice (e.g., sites aimed at teacher professional development might have examples of students’ work, collaboratively designed lesson plans, electronic records of previous online discussions, URLs to relevant information, etc.) that can be quickly retrieved, distributed, organized, and stored within the online community</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possible Features of an Assessment-centered, Online Learning Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tools for or tools that encourage self-assessment, reflection, metacognition, feedback such as pop-ups or text boxes to write selected information (e.g., an electronic notepad for recording reflections, pop-up questions prompting self-assessment, electronic feedback forms, etc.)</td>
</tr>
<tr>
<td>• Tools for or tools that encourage peer exchange, constructive critique, networking, such as collaborative design tools (e.g., shared online spaces for posting and editing group work, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possible Features of a Learner-centered, Online Learning Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Data in graphical, text-based, and multimedia forms, acknowledging diverse learning styles</td>
</tr>
<tr>
<td>• Searchable online database through which users can search the site by a topic of interest to support professionals in important aspects of their daily work and let them easily and quickly find what is of interest to them</td>
</tr>
<tr>
<td>• Customization according to user’s preferences and knowledge (i.e., through Web-based tools such as search engines, databases, conversation tools, simulations, visualizations, and learning environments to give users the ability to initiate discussion strands, import objects, attach files, store work, download software, post notes and published work, or add sound and video to the online workspace)</td>
</tr>
</tbody>
</table>

1 For further information, see LiveStats: http://www.deepmetrix.com; WebTrends: http://www.webtrends.com; 123LogAnalyzer: http://www.123loganalyzer.com; eXTReMe Tracker: http://www.extreme-dm.com/tracking/; HitBox: http://www.websidestory.com/products/web-analytics/hitbox-professional/. Note: eXTReMe Tracker and Hitbox software companies offered no version numbers at the time we used their software; therefore, we annotated these software packages as their original versions (version 1.0).

Evaluating Learners’ Use: Web site Traffic Analysis

Web site traffic analysis is one method that can help designers determine demographic information about site users (from where users come to the site and what learning resources they most often use while there). While this software-driven approach provides a cost-effective and comprehensive means of data collection, it supplies little context for the users’ activities at the Web site.

One only has to do a search on the Web for “Web site traffic analysis software” to find the variety of commercial packages available to analyze how and when visitors are accessing a Web site. While a complete listing or review of such software is beyond the scope of this article, we include here some name brands: LiveStats (version 6.2), WebTrends (version 5.0), 123LogAnalyzer (version 2.5), eXTReMe Tracker (version 1.0), and HitBox (version 1.0)3. There are also many Web sites that describe how such software packages analyze the statistics that are collected in a database on Web site servers (e.g., Itoh, 2001), and compare and contrast the features of such packages (e.g., Aviram, 1998). The programs differ as to the type and extent of reports they create based on these statistics, but nearly all such software generates similar basic measures, and is designed to provide information about users’ activity to Web site designers or server managers.

Most of the reference information on these tools and their use illustrates their application to commercially oriented Web sites (e.g., Lawson, Howard, Kennedy, & Pritchard, 2002; Morris, 1999), to help businesses see what products or information is most interesting to customers. Yet, by substituting learners for customers, and learning resources for products, designers of educational sites can generate insights about how this type of software can assist them. Through automatically generated and continuously collected data, such as that described in more detail below, designers of educational sites can gauge to some degree the “reach” of the site. They can gauge whether actual user profiles match the intended learner audience and identify which learning resources seem most appealing.

Designers can determine whether the site is capturing a return audience by reviewing reports on visitor demographics. While a high number of unique visitors might indicate that the site reaches a large audience, designers of an educational resource very likely expect people to return. Calculating the ratio of onetime visitors to “more-than-one-time” visitors can help designers infer whether the site was compelling or useful enough to convince learners to return.

Data on the average length of visits versus the median length of visits can inform site designers if some users linger over the site. The median represents the mid-point of the data, dividing all users into two equal halves. That the average time spent by users is higher than the median suggests that some users are spending far longer than others at the site, and they are perhaps poring over resources. If the average and median time spent by users at the site are similar, one might infer that learners are uniform in their time spent at the site; of course, the length of time for either measure is also helpful information.

Reports on those longer visits occur might help site designers make some educated guesses about who is using their site. For example, one might expect that the peak traffic hours for a teacher resource site would be after school during the week. If the traffic analysis report suggests user-centered analysis that considers user characteristics, preferences, and behaviors will assist Web site designers when they assess the success of the implementation of the above design elements.
otherwise, it should prompt the designer to form questions and collect
further information about how the site is being used and by whom.

Data regarding the site resources accessed allows the Web site designer
to discern the most and least accessed pages, along with information on
the pages where most visitors enter and exit. This is important feedback
that might suggest which of the site’s learning resources users perceived
as most valuable. Such automatically generated data can give teacher
educators/designers an idea of how evenly the resources on the site
are being utilized, and if resources intended to be most valuable are recog-
nized as such. This information can allow site designers to set priorities
as to which content areas should be further developed, and which areas
should be minimized. This information can also help the designers of a
site decide how to optimize the architecture of the Web site based on
where visitors are entering.

Figuring a ratio of page views to unique visitors enables site designers
to gauge how encouraged users are to venture into the site, follow links,
and check out resources. This ratio also allows designers to infer some
things about the visitors’ satisfaction with their visits. That is, if a visitor
accessed many pages, especially within a particular topic area, she may
have found resources helpful enough to look at more.

Finally, data collected on referrers (i.e., links from which visitors come
to the site) might suggest other entities with which teacher educators
designing the Web site could seek partnership. Data on the keywords
used in on-site searches or keyword searches, which led users to the site,
helps designers learn what sorts of information users expect or hope to
find there. If the things users are looking for are not the sorts of learning
resources a site provides, designers might want to add, or link to alternate
resources. Of course, data on keyword searches also helps define the meta
tags to place on the site’s pages, so users who are looking for specific
information land at the appropriate page.

In summary, the Web traffic analysis is helpful in that it lays out the
facts of a site’s use in a cost-efficient and comprehensive way, but it only
goes so far to support the designer’s ability to make inferences about
why site users did what they did. In order to learn why teachers move
through the educational resources as they do, another research method
is needed. In the following section, we discuss how we used a talk aloud
protocol to understand user preferences and behaviors in our resource-
based learning environment.

Evaluating Learners’ Understanding:
Think Aloud Protocol
Think aloud protocol, also known as talk alouds or verbal protocol
analysis, is a technique for assessing cognition that involves asking a study
participant to report his or her thoughts related to performance of a task.
It is associated with a variety of contemporary research methods aimed
at capturing thoughts as they occur, such as thought-listing or random-
thought sampling (Clark, 1997). The technique typically involves asking
participants to undertake a problem-solving task of moderate length while
reporting their thoughts as they occur. The participant is urged not to
think about what she is going to say before she says it, but rather focus
on the task. To this end, the researcher usually sits behind the participant
and only speaks to remind her to continue thinking aloud. Outcome
measures include a transcript of the think aloud, which can be used in
content analysis, and measures of task performance. The main advantage
of the talk aloud method is that it can provide a detailed description of
how subjects experience the task (in this case, using an educational Web
site). The data provided by the think aloud is continuous over time and
can be broken up into a number of discrete data points.

Think aloud protocols have been used in educational research to
evaluate instructional methods (Grave, Boshuizen, & Schmidt, 1996),
assessment methods (Barolo, Dockrell & Lunt, 2001; Norris, 1990),
and the use of instructional technology (Goldman, Zech, Biswas, Noser,
et al, 1999; Mathison, Meyer, & Vargas, 1999). Indeed, Goldman and
colleagues present a strong case that the assessment functions provided by
computer traces are insufficient as assessment tools unless accompanied
by process tracing methods such as think alouds. Ericsson and Simon
(1993) suggest that there are three levels of thinking aloud affected by
the type of instructions given to the subject. These include: (1) spontane-
ous thinking aloud, such as what one might do naturally in the process
of thinking through a problem; (2) intentional thinking aloud with the
purpose of simply reporting thoughts but not explaining them to an
audience; and (3) intentional thinking aloud with the purpose of commu-
nicating one’s meaning to others. They recommend the second level
as producing the most useful data that engenders the least reactivity to
the method. Asking the subject to explain his or her thoughts (level 2)
may cause significant changes in what is reported. In conducting think
alouds with inservice teachers as opposed to preservice, the distinction
between the second and third levels may become especially tenuous as
teachers may be quite familiar with talking aloud in problem-solving as
a way of communicating content in a classroom setting. Thus, it may be
necessary to emphasize that the participant need not explain everything
he or she says during a talk aloud.

The main methodological issues regarding the think aloud protocol
have focused on whether it truly captures cognitive processes and to what
degree it is also measuring subjects’ reaction to the think aloud situa-
tion. In general, think alouds have their highest validity when capturing
conscious thoughts, which are easily verbalized, as they occur. The issue
of reactivity calls attention to the importance of the nature of the task
undertaken during a think aloud. Ericsson and Simon (1993) suggest that
subjects should focus primarily on the task rather than the think aloud,
but part so that the subject does not devote too much attention to thinking
about what they are saying. In service of this aim, it is common procedure
to allow subjects to go through a practice task so that they develop some
comfort with thinking aloud. The think aloud should simulate actual tasks
to be undertaken by the intended Web site audience and pose a moderate
level of difficulty. Our own work in developing tasks for the eTech Web
site evaluation described below suggests that the quality of data provided
by the think aloud is related to task difficulty in an inverted U pattern.
A task that is too easy requires little thinking and is performed quickly.
A task that is too difficult constrains the cognitive resources necessary to
perform the task and report thoughts at the same time.

eTech Web Site Evaluation
Data and Methods
The multi-method framework outlined above was applied to the eTech Web
site approximately two years after its startup and midway through
the life of the eTech project. The eTech Project was designed to support
preservice teachers during and after their teacher preparation program to
use technology in support of instruction in their subject matter. Orga-
nized into 11 content areas/teacher licensure programs at our university,
the site included: vignettes illustrating added value uses of technology;
hardware and software product information; links to external Web sites
with teaching resources, lesson plans, and professional organizations; an
online discussion area; and case-based interactive exercises for practicing
instructional decision making. The site was introduced to preservice teach-
ers during their required technology integration class, utilized throughout
its duration, and intended to serve as a resource beyond graduation. The
eTech project staff compiled the resources at the eTech Web site.

The first two authors, as eTech project coordinator and project director
respectively, separately applied the checklist in Table 1 to the eTech Web
site, noting what features were present or absent. Afterwards, they met
with the third author to compare their checklists and discuss areas for
improvement. Data on eTech Web traffic was collected automatically
Results of Check List

Through applying the key dimensions checklist to the eTech Website, we collected information on the range of technology capabilities present in the site, including their intended and potential uses, and categorized them along the knowledge-, learner-, assessment-, and community-centered dimensions. We were quickly able to identify the strengths and weaknesses of the site's design and formulate questions about its content and architecture for further investigation. For example, we determined that eTech incorporated some assessment-centered characteristics, but was weakest in this dimension of quality. Users were invited to send feedback about the site via a comments form on the homepage. In addition, users could link to online, case-based scenarios where they could practice making instructional decisions about technology. They could receive summative feedback on their performances, but the software did not provide formative feedback, such as electronic prompts during performance. It also did not allow opportunities for self-assessment.

Results of Web Site Traffic Analysis

Analyzing WebTrends reports for the eTech site enabled us to make inferences about our users. For example, visitor demographics suggested that about one-third of eTech users were returning users, and that the average visit length was more than 10 minutes. eTech site resource numbers suggested that about a third of our visitors started at the homepage, from which the site branched out into K–12 subject areas. Other data suggested that most visitors moved from home to the beginning pages for these other 11 subject areas. These other 11 starting points were nearly evenly noted as entry pages. A resource page we host for a particular technology course at our university was both a top entry and exit page on our site. About half of our traffic had no referrer noted, and another large percentage came from our college or university Web site. Only a small portion of our audience arrived from a search engine.

Results of Think Aloud Protocol

With the two tasks that asked participants to search for a lesson plan idea, nearly all participants followed a similar path to accomplish the task, although some took less successful paths before this. They went to a subject area (e.g., science or math), clicked on resources, and then clicked on lesson plans. From there, some went to Web sites with which they were already acquainted (e.g., Marco Polo) and conducted searches from those Web sites.

Interestingly, most participants found looking for general information on technology integration difficult. When asked to find a simple guide to technology integration on the eTech site, the six participants were evenly divided among three different search paths before undertaking the task. Two participants gave up after repeated, unsuccessful use of the on-site search engines; two participants found a summary of technology integration principles by going to the site map; and two participants found a brief article on added value by going through an individual content area. For example, looking for a guide on how to integrate technology on the eTech site, a participant read the Web site aloud and commented on how useful they thought a possible guide might be.

"Technology use provides added value." That sounds kind of like what I'm looking for. "Appropriate to use in a lesson." So "Technology use" I'm going to. No, this is just saying that it does—that technology use provides added value to teaching and learning. It's more of just a statement, not whether or not the technology is appropriate. I'm just reading these things. "Added value summary." I mean I suppose this is kind of related. This is not really a guide to deciding. I guess a guide to me would be something that's more like questions and like a checklist or something.

The post-session interview revealed that some of the difficulties experienced by users were due to incongruence between the users' vocabulary and that used within the eTech Website. This applied especially to the terms "resources" and "tools." One subject remarked during her talk aloud that the eTech Web site's labels did not help her to understand what she might find there:

To me, when I saw [the label] "Resources" I didn't necessarily automatically go to 'Oh yeah, a lesson plan,' things like that. "Resources," I think of maybe, I thought of what kind of technology could be used, or something, which is kind of included I guess. But, I guess "Resources" is a very general term—and which you may have very well intended since a lot of information is underneath it.

Discussion of Results

The multi-method approach to formative evaluation provided three different yet complementary views of the eTech Web site as an online, resource-based learning environment. Using the checklist criteria as an outline of what a learning environment based on good pedagogical principles should look like, we found the Web site weak on the assessment-centered dimension, especially with respect to formative assessment. The traffic analysis indicated that the intended audience (i.e., preservice teachers learning about instructional technology) was accessing the Web site, but users were not necessarily accessing the material in a linear fashion. Only a minority went through the homepage. The think aloud protocol provided a more nuanced view of Web site use and showed that such use is highly dependent on a clear understanding of the terms employed throughout the Web site. Since the study was conducted midway through the eTech project, the results were used to improve the Web site as a Web-based learning environment. For example, we made changes to the homepage and to the reference page for the technology course. We also reached out to people at our top referring sites, to help them become more aware of our resources and perhaps further build a partnership.

One of the essential characteristics of an “internal” evaluation like this (one that allowed us to make responsive and timely changes to the Web site) is also one of its main limitations. An evaluation of a Web-based learning environment by its designers may bias the results obtained. While using checklist criteria to evaluate the pedagogical design of Web-based learning environments can be useful for generating formative feedback and assisting content analysis, the disadvantages of applying a checklist include the tendency toward oversimplification or inaccurate categoriza-
tion depending on the evaluator’s training and knowledge. For example, the categorization of the eTech site’s degree of assessment-centeredness by the project director and coordinator may be overly simplified or biased toward intended uses rather than potential uses of Web site features, given that the reviewers were both experienced visitors to the site and familiar with eTech’s layout. Where data do not fit into predetermined categories, or categories are loosely defined, reviewers may adhere too closely to a perceived checklist and therefore miss relevant data or opportunities for further clarification of the instrument.

To a certain extent, the use of complementary methods and data sources we describe here can help to overcome this bias. Web site traffic analysis is based on records of actual, rather than intended user behavior. Think alouds provide a close approximation of the user’s actual, rather than imagined experience within the learning environment. These latter two methods, in turn, are limited by providing only a description of a user’s experience and not a prescription of how a Web-based learning environment might be used successfully. For example, the results of the think aloud techniques are partially dependent on the particular skills and experiences that participants bring to the exercise (including experiences that poorly prepare them to use the eTech Web site). Even during the course of the think aloud, each participant tended to quickly learn the eTech site’s structure, such that the third and fourth tasks drew on knowledge they gained in earlier tasks.

Conclusion

The multi-method approach outlined above provides an alternative means for evaluating the pedagogical design and learners’ use of online, resource-based learning environments where more traditional process and outcome measures are unavailable. We have illustrated how these methods helped us to evaluate and develop a resource-based Web site as a learning environment for teachers. We learned that applying checklist criteria can provide an efficient means for gathering formative feedback during the site development process and can be useful for comparing the content of our site with an established framework. However, checklist criteria can also be subject to the reviewer’s assumptions and preferences. Data collection methods, such as Web site traffic analysis software, can be cost-effective and initially labor saving because they can be employed remotely or automatically. Statistical data can help teacher educators who are designing Web sites learn how the intended audience uses the online, learning environment, how to enhance its appeal, and how to enlarge the user base by partnering with referer sites. The complementary think aloud protocol, however, can be used to reveal an even more complete picture of what engages users and encourages them to return for additional learning. The think aloud protocol can reveal how easy or difficult and how useful the intended audience finds the typical tasks within the learning environment. While this feedback can be insightful, one must apply the protocol in ways that capture participant’s thinking aloud, and consider the influence of their previous skills and experiences. In addition, one must ensure that design tasks are focused and appropriate in their level of difficulty and are representative of actual tasks users are intended to undertake at the Web site. Surveys prior to using the protocol and interviews following its application could help to provide this information.

Online, resource-based learning environments hold tremendous potential for learning in both traditional and nontraditional settings. As networked technologies become increasingly ubiquitous and technology capabilities increasingly sophisticated, organizations and institutions serving preservice and inservice teachers with an educational mission are turning to the Web to provide more affordable, customizable outreach and resources for instruction. Further investigation is needed to develop an established, multi-method approach to gathering formative feedback on the potential and effectiveness of such resource-based Web sites as learning environments. Sustained and concomitant application of data gathering methods would do much to advance the Web site development process because it would help designers refine the environment in ways that more closely align with the ongoing behaviors, expressed needs, and interests of its intended users. Systematic, comprehensive evaluation, however, is usually difficult to accomplish during the initial design, prototyping, and beta-testing phases of Web site development, especially for organizations and public sector institutions with limited resources on time-sensitive grant schedules, or by individuals or groups of volunteers. Automated data gathering software, that can be embedded “behind the scenes” in the learning environment, holds promise for real time feedback, especially where it is part of a comprehensive, predetermined plan for data collection and analysis. Further development of electronic tools and instruments for the evaluation of online, resource-based learning environments and additional examples of their application would help teacher educators as designers meet their goals of providing quality learning opportunities for the intended learners anytime and anywhere.

References


Appendix:
Talk Aloud / Thinking Aloud Protocol

Main instructions
“I’m going to ask you to do several short tasks involving looking through a couple Web sites. The basic idea in the talk aloud exercise is to have you describe everything that you’re doing, seeing, and thinking while you go through each task. It’s more than just talking aloud to yourself as you might do in other situations, since you’ll be reporting all your thoughts while going through this exercise. But, it’s not the same thing as being a teacher, either, trying to explain the reasoning behind everything you do with the Web site. Just think, reason in a loud voice, tell me everything that passes through your head while you work through the task. There is no right or wrong way to go through this task.”

Reminders
After 20 seconds of silence, the experimenter should say, “What are you thinking about?”

Tasks
Practice Task: From the university’s homepage, find the current hours for [name of the main] library.
Task #1: Use the eTech Web site to find one new idea for integrating technology into a science lesson for fourth grade students.
Task #2: Use the eTech Web site to find a simple guide to decide whether technology is appropriate to use in a lesson.
Task #3: Use the eTech Web site to find one new idea for integrating technology into a geometry lesson for eleventh grade students.
Task #4: Use the eTech Web site to find one resource to aid in teaching other preservice teachers about technology integration.

Interview Questions
Is there any topic listed on the Web site that you didn’t explore but would have liked to look at?
Did you find it easy or difficult to navigate around the Web site? What made it easy or difficult?
What do you think is most useful about this Web site as a resource for teachers?
What do you think is least useful about this Web site as a resource for teachers?
What improvements, if any, can you see that would make the Web site a better resource for teachers?